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Existence of a Constant for Finite System Extinction

T. S. Mountford1

Received January 29, 1999

We show the existence of a constant # # (0, �) such that if {n is the extinction
time for a supercritical contact process on [1, n]d starting from full occupancy,
then [log(E[{n])]�nd tend to # as n tends to infinity.
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INTRODUCTION

We consider the contact process restricted to D, a finite subset of Zd. That
is to say the contact process where no births (or occupied sites) are permitted
outside D, but which otherwise evolves as a contact process. Formally our
process is a continuous time Markov chain on the (finite) state space
[0, 1]D with generator

0f (!)= :
x # D

( f (!x)& f (!)) c(x, !)

where c(x, !)=1 if !(x)=1; =* �y # D, |x& y| 1=1 !( y) if !(x)=0, and !x(z)
=!(z) for z{x and !x(x)=1&!(x).

This process is a continuous time Markov chain on [0, 1]D for which
0
�

(the configuration ! so that !( y)=0 \y) is a trap state but otherwise all
states can be reached from all other states. Thus this process must even-
tually hit the trap state 0

�
and thereafter stay there. The question we pursue

in this paper is how, starting from all sites having value 1, the time to hit
the trap state behaves for the set D=[1, n]d as n becomes large.

We will write !D
t for the contact process restricted to D at time t.

Unless otherwise specified it will be assumed that these processes are all
starting from full occupancy on D and that they are all generated from the
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same Harris system of Poisson processes on Zd. See [L] or [D] for further
details on the Harris construction of the contact process. It follows from
the above assumptions and the attractiveness of the processes that
!D1

t �!D2
t for all t if D1�D2 . A configuration on [0, 1]D may be thought

of as either a function from D to [0, 1] or as subset of D (by identifying
!D with the subset of sites taking value 1). So we may also write the above
relation as !D1�!D2

t for all t if D1�D2 .
In the interests of avoiding overcrowded suffixes for the special cases

D=[0, 1][1, n]d
, we will write !n

t rather than the more consistent ![1, n]d

t .
Similarly, while we use {D to denote the hitting time of for !D, we will
denote the random hitting time of 0

�
for !n by {n. As mentioned above the

default value of !D
0 will be simply D, the process !D, x

t will denote the pro-
cess with !D, x

0 equal to [x]. Again it will be assumed that this process is
generated by the fixed Harris system and thus we will have (again using the
attractiveness of the systems) for all t, !D, x

t /!D
t .

Our note aims to prove

Theorem 0.1. There exists a constant # # (0, �) so that for super-
critical contact process

log(E[{n])
nd � #

as n tends to infinity.

In our proof we will explicitly treat the case d =2 but it will be clear
that the arguments require no extra thoughts for higher dimensions just
more notation. Throughout the paper terms like K will denote constants
which do not depend on variables such as n and may change from line to
line.

Remark. In fact it will be clear, though we will not prove this, that
for any bounded connected set D/Rd whose indicator function is
Riemann integrable (that is as n tends to infinity, the number of n th order
dyadic cubes that intersect D but are not contained in D is negligible com-
pared to the number of such cubes that are completely contained in D) if
Dn=nD & Zd then

log(E[{Dn])
nd � #vol(D)

as n tends to infinity.
Our problem follows work by [DS] for the contact process in one

dimension. There Theorem 0.1 was shown and the constant # explicitly
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identified. This followed work by [DL] which showed that the behaviour
of extinction times for large finite systems reflected the phase transition
occurring at the critical rate *c . This behaviour can be seen to carry over
to higher dimensions. [C] showed that in the supercritical regime there
exists two constants C1 , C2 so that for large neC1nd

�E[{n]�eC2nd
. We

shall use the breakthrough renormalization result of [BG] together with
contour arguments found in or based on [D] to prove our result. This
combination of ideas has been used before in [M] to show that {n divided
by its expectation converged in distribution to the mean one exponential
random variable. This note has much in common with the earlier work.

The basic step to proving Theorem 0.1 is to show

Corollary 3.1. Let {2n, n be the time for the contact process restricted
to [1, 2n]_[1, n] to die. For all n large, E[{2n, n]�n&9E[{n]2.

Given this result the final conclusion follows from routine subadditive
manipulations. The key part of the proof of Corollary 3.1 is the introduc-
tion of an artificial Markov process which resembles the contact process on
[0, 1][1, n]2

but which has a regeneration property that turns it into an
irreducible Markov process with a stationary measure which puts mass on
0
�

``approximately'' equal to 1�E[{n]. ``Approximately'' here means up to a
multiple of a power of n. If we run two such independent processes, then
the corresponding stationary measure for the double configuration (0

�
, 0

�
)

will be ``approximately'' 1�(E[{n])2. By the attractiveness property (and
our not entirely straightforward choice of regeneration procedure) it will
follow that we can couple these two independent processes with the contact
process on [1, n]_[1, 2n] so that (outside of an irrelevantly small set) our
contact process will be null only if the two independent processes are in
state (0

�
, 0

�
). From this Corollary 3.1 will be argued.

1. In this section we gather together some of the consequences of
[BG] and the contour arguments of [D1]. We assume familiarity with
oriented bond percolation and the arguments found in the latter reference.

Lemma 1.1. For any fixed *>0, there is an =0>0 so that if �(s, t)
is a 1-dependent oriented site percolation system restricted to [1, n]_Z+

with probability at least 1&=0 of a given site being open, then the chance
that (x, 0) is connected to ( y, t) for x, y+t#0 (mod 2), t # [n2 *, n8] is at
least 1�2, uniformly over x, y, t subject to above conditions.

In the following as is usual B(x, r) denotes the Euclidean ball of radius
r centred at x and �A

m=[z: (z, m) is connected to (x, 0) for some x # A].
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[BG] established a powerful renormalization result. For two dimen-
sions the renormalization result entails:

Theorem 1.1. Given a supercritical contact process ! and any
=>0, there exists integers r, L(r<<L), S, k so that we can couple ! restricted
to Z_[0, 4L], with a 1-dependent percolation system, �, of closure proba-
bility <=, so that for A=[x: x is even and !0#1 on B( y, r) for some
y # [xkL&2L, xkL+2L]_[L, 3L]], �A

m/[x: x+m#0 (mod 2), !s#1
on B( y, r) for y # [xkL&2L, xkL+2L]_[L, 3L] and some s # [2mS,
2mS+2S]]

Putting these two results together we have

Corollary 1.1. For any fixed *>0 there exists L and c>0 such
that for the contact process restricted to Dn=[1, n]_[1, 4L], !Dn,

inf
*n 2�t�n 8

inf
x, y # Dn

P[!Dn , x
t (x)=1]�c>0

for all n large.

Proof. Let us choose L so that Theorem 1.1 can be applied with L
and some k, r, S for the =0 of Lemma 1.1. Then given x, choose z so that
z is even, zkL # (2L, n&2L] and subject to this (zkL, 2L) minimizes the
distance from x. Necessarily this distance will be less than 5kL+4L. Now
choose w similarly so that w is even and (wkL, 2L) minimizes the distance
to y. Then choose even u as large as possible subject to 2(k+1) uS being
less than t&2. Let B1 be the event that B((zkL, 2L), r) is fully occupied
by !Dn , x

1 . P[B1]�a(r, k, L)>0. By Theorem 1.1, given event B1 , the
chance of B2 , that for some v in Dn within 4L of (wkL, 2L) and for some
s in [2ukS, 2(k+1) uS], we have !s(v)=1 is at least 1�2. Using the Strong
Markov property at

T=inf[s # [2ukS, 2u(k+1) S]: !Dn , x(v)=1 for some |v&(wkL, 2L)|�4L]

we obtain that P[!Dn , x
t ( y)=1 | B1 & B2]�b(k, L)>0. Thus our lemma

holds with c equal to 1
2 a(r, k, L) b(k, L).

Corollary 1.2. For c the constant of Corollary 1.1, we have that
given finite M, *>0, for all n large if Dn=[1, n]_[1, Mn], then

inf
*n2�t�n 8

inf
x, y # Dn

P[!Dn , x
t ( y)=1]�c2>0

We will also need the following lemma from [M].
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Lemma 1.2. For n large and all x # [1, n]2, P[!1
�
, n

n2 =!x, n
n2 | !x, n

n2

{0
�
]> 1

2 .

Remark. The above conclusion also holds for domains [1, n]_
[1, Mn] for M fixed and all large n.

2. In this section we introduce a family of Markov processes which
are essentially Markov chains on [0, 1][1, n]d

that greatly resemble the con-
tact process but which have no trap states. Our process will be denoted
by ('t , vt) with 't # [0, 1][1, n]d

and vt # [0, n8). So our process ('t , vt)
has state space [0, 1][1, n]d

_[0, n8), though since we will stipulate that if
't{0

�
then vt must equal 0, the state space may also be seen as being

[0, 1][1, n]d
_ 0

�
_[0, n8).

The process vt will be the measure (mod(n8) of how long ' has been
in state 0

�
. The choice of the power 8 is somewhat arbitrary; any large

power would do. It corresponds to the fact that (for the supercritical con-
tact process in a thick enough region) if a site x is vacant for the contact-
process but a site within of order n is occupied then the chance that site
x is occupied at time (say) n2 will be bounded away from 0 as n becomes
large. Hence if a fixed site x is vacant throughout time interval [0, n8�2]
then outside an event of probability even e&cn 4

<<e&kn 2
for any k, there

must have been a time in interval [0, n8�2) at which there were no sites
occupied for the contact process within of order n of our site x.

Fix z in [1, n]d and $ # (0, 1), then our process can be generated by a
Harris system on [0, 1][1, n]d

and an independent system of i.i.d. Bernoulli
($) random variables Xi . The process is defined by alternating epochs:
a type one epoch is where ' is not identically zero (and therefore v is 0),
while a type two epoch is where v is non-zero and therefore ' is identically
zero. During a type 2 epoch v simply linearly increases (mod(n8)) until it
hits value zero. At this point with probability 1&$ the type two epoch
(and the linear increase of v) continues and with probability $, the type two
epoch ends and ' jumps to configuration 'z where 'z( y)=$xy , the
Kronecker function for z. Into type one epoch v remains zero while '
evolves like a contact process powered by the Harris system. The one
epoch ends and a two epoch begins when ' again hits the empty configura-
tion.

We record some simple properties of this Markov process.

Lemma 2.1. Let ?n be the projection of the equilibrium distribu-
tion of ('n, vn) on [0, 1][1, n]d

. Then ?n[0
�
]�Kn8�E[{n] for some constant

K not depending on n.
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Proof. For any initial state ?n[0
�
] is the a.s. limit of

1
t |

t

0
I' n

s=0
�
ds

We will consider the process starting from (0
�
, 0). Then in this process the

successive type one and two epochs form an alternating renewal sequence.
If Yi is the length of the i th type two epoch and Zi is the length of the i th
type one epoch, then the Yi and the Zi are i.i.d. sequences and ?n[0

�
] is

equal to E[Y1]�(E[Y1]+E[Z1])�E[Y1]�E[Z1]. Now E[Y1] is equal
to n8�$. We cannot calculate E[Zi] exactly however we can bound from
below. By Lemma 1.2, there exists a constant c>0 independent of n or z
in [1, n]d such that with probability at least c, !z, n

n 2 =!1
�
, n

n2 . Now by [M],
the lifetime { satisfies {�E[{] tends in distribution to a mean one exponen-
tial, so for any sequence of events A(n) of probability at least c we have

lim inf
n � �

E[{n; A(n)]
E[{n] |

&log(1&c)

0
&e&u du�2K

for some K not depending on n. Therefore

E[{n; I[!n 2
x, n

=!n
n 2]]

E[{n]
�K

for n large. Therefore E[Z1]�KE[{n] for all n large.

Corollary 2.1. Let ('n, vn) be a process in equilibrium, then the
probability that ' is vacant for some t # (0, n8) is bounded by Kn8�E[{n]
for n large.

Proof. Let X be the Lebesgue measure of the time in (0, 2n8) that '
is vacant. Then as (', v) is in equilibrium, the expectation of X is equal to
2n8?n(0

�
)�2n8 Kn8�E[{n]. Let S be the first time that ' becomes zero, then

by the Strong Markov property we have E[X | S�n8]�n8 as after hitting
0
�
' must remain there for at least n8 time units. Hence we must have that

P[S<n8]�Kn8�E[{n].

Corollary 2.2. Let ('n, vn) be a process in equilibrium, and let
('n, 1

� , vn) be the process started with 'n, 1
�0 #1 and generated by the same

Poisson processes and the same Bernoulli random variables. With prob-
ability at least 1&Kn8�E[{n] (for some K not depending on n), we have
nn

s �'n, 1
�s \s.
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Proof. It is easy to see that

P('n, 1
�s #0 for some s # (0, n8))�

Kn8

E[{n]

for some K not depending on n by [M] and attractiveness. By Lemma 1.2
repeatedly applied we have

P['n
n8{'n, 1

�n8 , 'n
s {0

�
, 'n, 1

�s {0
�

\s # [0, n8]]�e&kn 4

for some strictly positive k. The result now follows from Corollary 2.1.

Remark. If in the above lemmas, the area to which the contact pro-
cess is restricted is changed from [1, n]2 to [1, n]_[1, Mn] for some fixed
positive M, then all the above results and arguments go through. If we
have a fixed n and n�M�m�Mn, then we denote the corresponding pro-
cess on [0, 1][1, n]_[1, m] _ 0

�
_[0, n8) by ('n, m, vn, m). If M is fixed then as

n tends to infinity, the fact that the recovery time is n8 rather than m8 or
some term combining n and m becomes mute as the specific recovery time
is irrelevant. For the rest of the paper {n, m will represent the time for
!n, m=![1, n]_[1, m] to become vacant.

3. In this section we introduce a coupling between two independent
processes ('t , vt), ('$t , v$t) on [0, 1][1, n]2

and the contact process restricted
to [1, 2n]_[1, n], !2n, n, provided that these constant $ used in the defini-
tion of the ('t , vt) has been fixed sufficiently small.

Proposition 3.1. For fixed finite M let n�M�m, m$�Mn. We can
couple together two independent processes ('m, n

t , vm, n
t ), ('m$, n

t , vm$, n
t ) in

equilibrium, with a contact process restricted to [1, m+m$]_[1, n],
!m+m$, n so that until the random time Vn=inf[t: 't='$t=0

�
], we have

!m+m$, n
t {0

�
, outside of a set of probability e&cn 4

.

Proof. We simply treat the case where n=m=m$ for the sake of
simplicity. Fix z in [1, n]2 and a $<c2�2, where c is the constant of
Corollary 1.1. These choices will define the distribution of the processes
(', v), ('$, v$) as in Section 2. Let !2n, n be generated by Poisson processes
Dx for x # [1, 2n]_[1, n], Nx, y , for x, y # [1, 2n]_[1, n], |x& y|=1. We
will use these same processes to generate the other two processes: to
generate (', v) we use the Poisson processes Dx , Nx, y for x, y # [1, n]2;
to generate ('$, v$) we use the Poisson processes N$, D$ given by D$x=
Dx+(n, 0) , N$x, y=Nx+(n, 0), y+(n, 0) . It remains to describe the Bernoulli (b)
random variables to complete the coupling.
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We define the sequence of stopping times Ti , Si recursively as follows
(no matter that we have not yet fully constructed the (', v), ('$, v$) pro-
cesses): T0=0, Si=inf[t>Ti&1 : 't or '$t=0

�
], and Ti=Si+n8. By our

choice of generating Poisson processes, it is clear that if

!2n, n
Ti

(x)�'Ti
(x) \x # [1, n]2 and

!2n, n
Ti

(x)�'$Ti
(x&(n, 0)) \x # [n+1, 2n]_[1, n]

then

!2n, n
t (x)�'t(x) \x # [1, n]2 and

!2n, n
t (x)�'$t(x&(n, 0)) \x # [n+1, 2n]_[1, n]

for all t # [Ti , S i]. Therefore to show the proposition it only remains to
show that we can choose our coupling so that if Si<Vn , then the above
relation holds for t up to and including the smaller of Vn and Ti outside
of a set of small probability. We suppose without loss of generality that at
Si , '$=0

�
and 'Si

is not identically zero. Now up until the minimum of the
times Ti and Vn , the process ' will simply be a contact process generated
by its Harris system and so automatically we will have 't(x)�!2n, n

t (x) for
x # [1, n]2 and t # [Si , min(Vn , Ti )]. Equally '$ is identically vacant on the
time interval [Si , Ti ) a.s. Thus it only remains to show that we can couple
our processes so that at !2n, n(x)=1.

We consider the time interval [Si , Si+n8]. We neglect the null set
where ' dies out at times Si+n8, Si+2n8 } } } . Then if ' dies out during this
interval, then we are free of any coupling constraints and will simply use
independent Bernoulli($) random variables to generate '$ and later '. So
we need only treat the case where ' is not identically vacant on this inter-
val. Let Ki be the first time in time interval [Si , S i+n8�2] that a site in 't

``tries to give birth'' to a site in [n+1, 2n]. More formally we write

Ki=inf {t # _Si , Si+
n8

2 & : for some k # [1, n],

't(n, k)=1, t # N(n, k), (n+1, k)=
Note that as !2n, n dominates ' on [1, n]2, it must be the case (for finite Ki )
that !2n, n

Ki
(n+1, k)=1 for k in the definition of K i above. On Ki finite, we

consider the contact process on [n+1, 2n]_[1, n] starting at time Ki with
just the site (n+1,k) occupied. This system is certainly allowed to die out
and will by the previous observation be dominated by !2n, n. We denote this
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process by !$ , i, so !$ , i
Ki

is 1 at site (n+1, k) and zero everywhere else. Now
by Corollary 1.1 repeatedly applied we have that P[Ki=�]�e&kn4

for
some strictly positive k not depending on n. If in fact Ki=� then we will
henceforth generate the Bernouilli random variables of the two processes
(', v), ('$, v$) independently of !2n, n. In this (unlikely) event the coupling
will have broken down. By Corollary 1.2 the conditional probability that
!$ , i

Si+n8(x+(n, 0))=1 is at least c2>$. We introduce Ui , a uniform random
variable independent of !2n, n. We define '$Si+n8(x)=1 if and only if

(A) !$ , i
Si+n 8(x+(n, 0))=1 and

(B) Ui�$�P[!$ , i
Si+n8(x+(n, 0))=1 | Ki (k, n)]

If this is not so then we repeat. We note that if '$Si+n8(x)=1, then by
design it must be the case that either

(a) Vn<Si+n8, or

(b) Ki equals infinity, or

(c) !2n, 2
Si+n 8(x+(n, 0))=1.

The probability that for some i, S i<Vn and Ki=� is easily seen to
be bounded by Kn8eLn 2e&hn4

�e&cn4
. The result is therefore proven.

Corollary 3.1. Let {2n, n be the time for the contact process restricted
to [1, 2n]_[1, n] to die. For all n large, E[{2n, n]�n&9E[{n]2.

Proof. Consider two independent processes ('n, vn), ('n$, vv$) coupled
with a contact process restricted to [1, 2n]_[1, n] as in Proposition 3.1
above. By this proposition we have that

P[{2n, n<(E[{n])2�n17�2]<P[Vn<(E[{n])2�n17�2]+e&cn 4

It remains simply to estimate the probability on the right hand side. By
Corollary 2.2 it is sufficient to show that if ('n, e, vn), ('n, e$, v$n) are two inde-
pendent processes started in equilibrium and if V $n=inf[t: 'n, e='n, e

t $=0
�
],

then P[Vn<(E[{n])2�n17�2] tends to zero as n tends to zero. Let random
variable X equal � ((E[{ n])2�n17�2)+n8

0 I's
n, e='s

n, e$=0
�
ds. Then by Lemma 2.1,

E[X ]�(E[{n])2�n17�2+n8(K(n8�E[{n]))2�n8&1�2. On the other hand the
conditional expectation of X given that Vn is less than (E[{n]�n8)2�n1�2 is
at least n8�2. The result follows.

In the same way we show

Corollary 3.2. Fix M. For n large, r�1, nr�m�nM, we have
E[{m, n(r+1)]�n&9E[{m, nr] E[{m, n].
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We are now ready to prove Theorem 1.1. The proof is very similar to
the proof of the existence of a limiting average for sub or super additive
sequences. We follow the path we do because we do not wish to prove
superadditivity for terms corresponding to the death times for rectangles of
wildly differing side length.

Proof of Theorem 1.1. Fix M>>27 and =<<1�M, but otherwise
arbitrary. Pick n0 so large that the conclusions of all the above results hold
for our fixed M. We will also require that 72 log(n)�n2= for all n�n0 and
that = log(n0)>>1.

Let # be the limsup as n tends to infinity of log E[{n]�n2. The paper
of [C] ensures that # is in the interval (0, �). Let n1 be the first n greater
than n0 such that log(E[{n])�n2(#&=�4). Now for any n greater than n0 ,
we have by Corollary 3.1, and then Corollary 3.2 applied with m=2n and
r=1, that E[{2n]�(E[{n])4�n18. That is if an=E[{n]�n7, then a2n�(an)4.
This means that if an�en 2(#&=), then \i, a2 in�e(n2 i )2 (#&=). Thus this holds
in particular for n=n1 .

Now given k # [M�2, M] apply Corollary 3.2 repeatedly with m and n
both equal to n1 and r equal to 1, 2,..., k&1, to finally obtain

E[{kn1 , n1]=E[{n1 , kn1]�(E[{n1])k�(n9k
1 )

Now apply Corollary 3.2 in succession again with m=kn1 and r=1, 2,...,
k&1 to obtain

E[{kn1 , kn1]�(E[{n1 , kn1])�(n9k
1 )�(E[{n1])k 2�(n9k 2+9k

1 )

Thus, by our choice of n0 we have that for every k # [M�2, M],
log E[{kn1]�(#&=�2)(kn1)2. Consequently (again using our choice of n0 ,
we obtain for each k # [2, M] that akn1

�e(#&=�2)(n1k)2�(n1k)7�e(#&=)(n1k)2
.

Thus by preceding paragraph we find that for each k # [M�2, M] and each
positive i, that E[{2 in1 k]�e(#&=)(2 ikn1)2

. Finally given any n�Mn1 , choose
i so that (M�2) n12i�n<Mn12i, and choose k so that 2ikn1�n<
2i (k+1) n1 . Then by monotonicity we have

E[{n]�E[{(2 i kn1)2
]�e(#&=)(1&2�M )2 n2

This proves the result by the arbitrariness of M and =.
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